skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hayles, Aidan J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Metal-organic frameworks (MOFs), made from metal ions and organic linkers, are promising materials for drug delivery due to their porous morphology. These components significantly affect drug loading, but the wide variety of irons and linkers makes it challenging to systematically evaluate their drug loading capacities. Machine Learning (ML) provides predictive models for drug loading based on properties such as ion type, linker structure, and MOFs morphology (e.g. surface area). However, the accuracy of these models is affected by hyperparameters. To improve model performance, this work develops a genetic algorithm (GA)-based optimization approach to build ML models for predicting drug loading rates. Our results demonstrate the predictability and generalizability of this approach for estimating the drug-loading capacities of different material-drug combinations. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026